The functional integrity of the serpin domain of C1-inhibitor depends on the unique N-terminal domain, as revealed by a pathological mutant.
نویسندگان
چکیده
C1-inhibitor (C1-Inh) is a serine protease inhibitor (serpin) with a unique, non-conserved N-terminal domain of unknown function. Genetic deficiency of C1-Inh causes hereditary angioedema. A novel type of mutation (Delta 3) in exon 3 of the C1-Inh gene, resulting in deletion of Asp62-Thr116 in this unique domain, was encountered in a hereditary angioedema pedigree. Because the domain is supposedly not essential for inhibitory activity, the unexpected loss-of-function of this deletion mutant was further investigated. The Delta 3 mutant and three additional mutants starting at Pro76, Gly98, and Ser115, lacking increasing parts of the N-terminal domain, were produced recombinantly. C1-Inh76 and C1-Inh98 retained normal conformation and interaction kinetics with target proteases. In contrast, C1-Inh115 and Delta 3, which both lack the connection between the serpin and the non-serpin domain via two disulfide bridges, were completely non-functional because of a complex-like and multimeric conformation, as demonstrated by several criteria. The Delta 3 mutant also circulated in multimeric form in plasma from affected family members. The C1-Inh mutant reported here is unique in that deletion of an entire amino acid stretch from a domain not shared by other serpins leads to a loss-of-function. The deletion in the unique N-terminal domain results in a "multimerization phenotype" of C1-Inh, because of diminished stability of the central beta-sheet. This phenotype, as well as the location of the disulfide bridges between the serpin and the non-serpin domain of C1-Inh, suggests that the function of the N-terminal region may be similar to one of the effects of heparin in antithrombin III, maintenance of the metastable serpin conformation.
منابع مشابه
Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملImmunogenic and Protective Potentials of Recombinant Receptor Binding Domain and a C-Terminal Fragment of Clostridium botulinum Neurotoxin Type E
Clostridium Botulinum Type E neurotoxin heavy chain consists of two domains: the translocation domain asthe N-terminal half and the binding domain as the Cterminal half (Hc). One effective way to neutralize botulinum neurotoxin is to inhibit binding of this toxin to neuromuscular synapses with antibodies against binding domain. Two synthetic genes, coding for Hc (the full length binding d...
متن کاملN-Terminal Domain of Fragile Histidine Triad Exerts Potent Cytotoxic Effect in HT1080 Cells
Fragile histidine triad (FHIT) serves a critical function as a tumor suppressor that inhibits p53 degradation by mouse double minute 2 (MDM2). The functional domains of FHIT involved in tumor inhibition was interpreted. In-silico screening data were employed to construct truncated forms of FHIT to assess their cytotoxic effects on the HT1080 cell line. Full FHIT expression was confirmed by west...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 32 شماره
صفحات -
تاریخ انتشار 2003